Preview Mode Links will not work in preview mode

Circulation on the Run

Oct 1, 2018

Dr Carolyn Lam:                Welcome to Circulation on the Run, your weekly podcast summary and backstage pass to the journal and its editors. I'm Dr Carolyn Lam, associate editor from the National Heart Center and Duke National University of Singapore.

                                                FDG-PET CT was recently introduced as a new tool for the diagnosis of prosthetic valve endocarditis. However, can we improve on its diagnostic performance? Well, to learn more you have to listen to the upcoming featured discussion, right after these summaries.

                                                Our first original paper this week describes a potential novel therapy for hypertension. In this study from first author Dr Hu, corresponding author Dr Soong, from Yong Loo Lin School of Medicine National University of Singapore, authors showed that galectin-1 is a key regulator for proteasomal degradation of CaV 1.2 channels. L-type CaV 1.2 channels are known to play crucial roles in the regulation of blood pressure. In a series of elegant in vitro and in vivo experiments, the authors showed that galectin-1 promotes CaV 1.2 degradation by replacing CaV-beta and thereby, exposing specific glycines for polyubiquitination. This mechanistic understanding provided the basis for targeting CaV 1.2 galectin-1 interaction and demonstrated the modulatory role that galectin plays in regulating blood pressure. The study, therefore, offers a potential novel approach for the therapeutic management of hypertension.

                                                Direct oral anticoagulants or DOACs, are surpassing warfarin as the anticoagulant of choice for stroke prevention in non-valvular atrial fibrillation. However, DOACs outcomes in elective peri-procedural settings have not been well elucidated and remain a source of concern for clinicians.

                                                The next paper in today's issue was a meta-analysis designed to evaluate the peri-procedural safety and ethicacy of DOACs versus warfarin. For author Dr Nazha, corresponding author Dr Spyropoulos, from the Feinstein Institute for Medical Research in Northwell Health at Lenox Hill Hospital in New York, reviewed the literature for data from phase three randomized controlled trials comparing DOACs with warfarin in the peri-procedural period among patients with non-valvular atrial fibrillation. Sub study from four trials were included namely RE-LY, ROCKET-AF, ARISTOTLE, and ENGAGE-AF. The short-term safety and ethicacy of DOACs and warfarin were not different in patients with non-valvular atrial fibrillation peri-procedurally. Under an uninterrupted anticoagulation strategy, DOACs were associated with a 38% lower risk of major bleeds compared to warfarin.

                                                The next paper presents results from the Sarcomeric Human Cardiomyopathy Registry or SHARE, which combined longitudinal data sets curated by eight international hypertrophic cardiomyopathy specialty centers to provide a better understanding of the factors that contribute to heterogeneous outcomes in lifetime disease burden in patients with hypertrophic cardiomyopathy. First and corresponding author Dr Ho from Brigham and Women's Hospital and colleagues analyzed longitudinal clinical information on 4,591 patients with hypertrophic cardiomyopathy. By examining the data set spanning more than 24,000 patient-years, the mortality of patients with hypertrophic cardiomyopathy was shown to be 3-fold higher than the general population at similar ages. The lifetime cumulative morbidity of hypertrophic cardiomyopathy was considerable, particularly for patients diagnosed before age 40 years and patients with sarcomere mutations. Atrial fibrillation and heart failure were the dominant components of disease burden. Thus, young age of diagnosis and the presence of sarcomere mutations are powerful predictors of adverse outcomes in hypertrophic cardiomyopathy. These findings highlight the need for close surveillance throughout life and the need to develop disease-modifying therapies.

                                                The final original paper this week provides molecular insights into atherosclerosis and it shows that defective base excision repair of oxidative DNA damage in vascular smooth muscle cells promotes atherosclerosis. Now, we know that atherosclerotic blocks demonstrate extensive accumulation of oxidative DNA damage, predominantly as 8-oxoguanine lesions. In today's paper, first author Dr Shah, corresponding author Dr Bennett from University of Cambridge and colleagues studied levels of 8-oxoguanine and its regulatory enzymes in human atherosclerosis. They found that human plaque vascular smooth muscle cells showed defective nuclear 8-oxoguanine repair, associated with reduced acetylation of the base excision repair enzyme 8-oxoguanine-DNA-glycosylase-1. Furthermore, correcting the base excision repair defect in vascular smooth muscle cells alone markedly reduced plaque formation, thus indicating that endogenous levels of oxidative DNA damage in vascular smooth muscle cells promoted plaque development.

                                                And that brings us to the end of this week's summaries. Now for our feature discussion.

                                                Prosthetic valve endocarditis is a life-threatening complication. However, making a timely diagnosis of prosthetic valve endocarditis before the occurrence of severe complications is really difficult. Now, FDG-PET CT has recently been introduced as a new tool for the diagnosis of prosthetic valve endocarditis. However, previous studies reported only modest diagnostic accuracy and may have been hampered by confounders. But today's study, our feature study in Circulation, addresses this issue. We have none other than the corresponding author, Dr Ricardo Budde from Erasmus Medical Center in Rotterdam, the Netherlands, and our dear associate editor, Dr Victoria Delgado, who is in Leiden University Medical Center, also in the Netherlands.

                                                So please tell us, how does your study help us address this issue of the accuracy of FDG-PET CT

Dr Ricardo Budde:           What we actually did is that of course endocarditis is a relatively rare disease, so we had six hospitals in the Netherlands that collaborated on this study and in each of the hospitals we searched for PET CT scans that were performed in patients with a prosthetic heart valve, either because they were suspected of having endocarditis, or if they were meant for other purposes, for example oncological follow-up. Then we grouped all those CT scans together, interpreted the PET CTs anew by dedicated interpreters, and then compared the findings with the actual diagnosis in the patient, which of course is always difficult in endocarditis because to make the diagnosis is difficult. So, also, one year follow-up period was included in that to be absolutely certain whether the patient had endocarditis or not. By taking this whole cohort of patients, we were able to determine the diagnostic accuracy of PET CT, as well as by using a logistics model, identify confounders which influence the diagnostic accuracy of PET CT.

                                                I think the study that we did addresses several important aspects and the way it helps physicians in actually interpreting and implementing PET CT to diagnose endocarditis is two-fold. First of all, we identified confounders that have to be taken into account when interpreting and using the PET CT. For instance, low inflammatory activity at the time of imaging and the use of surgical adhesive during a prosthetic heart valve implantation are confounders which should be taken into account when interpreting the PET CT. Furthermore, the guidelines have always insisted on not to use or use it very cautiously PET CT within the first three months after prosthetic heart valve implantation. However, we showed that actually this period after implantation does not necessarily have to be taken into account as also a good diagnostic accuracy can be obtained within the first three months after implantation.

Dr Carolyn Lam:                Ricardo, that's wonderfully put. I don't do a CT, PET CT, routinely. In fact, I am echocardiologist and it used to be that infective endocarditis was diagnosed with echo. So Victoria, tell us, how does echo stand now with this information?

Dr Victoria Delgado:        That's a very good question but I think the guidelines set a very clear figure of how the diagnostic workup of patients with prosthetic valve endocarditis should be performed. An echocardiography is the first imaging technique. The point is that transthoracic echocardiography in patients with suspicion of prosthetic valve endocarditis is very challenging. In terms of ideal, echocardiography is probably the best imaging technique to do first to evaluate whether it is endocarditis or not. It's difficult, we have to take into account that for a specific prosthetic valve, particularly mechanical, the shadowing can make that we don't see the [inaudible 00:10:22] and sometimes it's difficult, particularly in the early phase immediately after implantation, all the inflammation can be confounder for presence of endocarditis. In those cases, I think that this study provides additional and important data highlighting which are the confounders when you use PET CT to evaluate depressions of endocarditis. I think that, when you take into account those confounders, the accuracy of this technique is very good in order to make or help in the diagnosis of these patients. So, echocardiography, I think that will remain as our first imaging technique to rule out [inaudible 00:11:10] we can see but in those cases where the diagnosis is not confirm or rule out with transthoracic and transesophageal echocardiography this study provides additional data and important data showing that PET CT is a valuable complementary imaging diagnostic test for these patients.

Dr Carolyn Lam:                Ricardo, would you agree with that because I think your study also emphasized that perhaps FDG-PET CT should be implemented early in the diagnostic workup to prevent the negative confounding effect of the low inflammatory activity? So how do we put this all together?

Dr Ricardo Budde:           Well actually, I agree with Dr Delgado that echocardiography is and should be the first-line test that you do if you have a patient that has a suspicion of endocarditis. I mean, the advantages of echocardiography are many and it's non-invasive, it's bedside-available if needed, it's patient-friendly, and it provides a huge amount of information so you should always start with echocardiography. However, sometimes it can be difficult by echocardiography, for the reasons just explained by Dr Delgado, and I think then PET CT should be considered. And when you want to do a PET CT, then you should do it early within the diagnostic workup.

                                                Actually, in the article, one of the figures is a flow chart which we provide, and it provides information on how we think PET CT can best be implemented in the workup of endocarditis. In this flow chart we also start with doing an echocardiography and also, importantly, consult the endocarditis time to make initial classification of whether it's a rejected, possible, or definite prosthetic heart valve endocarditis. After that, you can follow the flow chart and see when you can best implement PET CT, in our opinion.

Dr Carolyn Lam:                Indeed Ricardo, I am so glad you brought up this figure and listeners, you have to take a look at it. I can imagine that everybody will be using this and discussing it and how to incorporate this in the workflow. And indeed you do start with either transthoracic or transesophageal echo and blood cultures, so thank you for clarifying that.

                                                Now, for our clinicians out there, are there any situations you may be telling us to be a little more careful? Could you put it simply for us when it comes to the FDG-PET?

Dr Ricardo Budde:           You mean when not to perform a PET CT?

Dr Carolyn Lam:                Yeah, or when we have to be really careful about inaccuracies.

Dr Ricardo Budde:           I think, of course, the confounders that we indicate in the article, especially if bioglue has been used by the surgeon during the initial surgery. We know that bioglue can be seen on a PET CT as a false positive uptake of FDG and it's also important to note that this is a phenomenon that can persist for a very long time after a valve implantation. It could be for years, so especially that I think is a very important confounder to take into account and be careful when you interpret PET CT or use the PET CT and always read the original surgical report if it is available to obtain this information.

Dr Carolyn Lam:                That's wonderful advice. Victoria, do you have anything to add?

Dr Victoria Delgado:        No, I think that Dr Budde explained perfectly this figure that is key in the article and also how to evaluate patients with suspected endocarditis of prosthetic valve. One thing that sometimes we forget is starting from the first step that is a good clinical history which includes also a good evaluation of previous history and, if possible, what has been done in the patient. I think that this key information to understand the findings on the echocardiography, transthoracic or transesophageal, and the subsequent investigations that you are going to perform. Either CT which is considered, for example, when you have a definitive prosthetic valve endocarditis and you want to rule out potential complications such as abscess, for example, and if you perform a PET CT or other imaging modalities that then also indicate the presence of infection like, for example, [inaudible 00:15:26] leukocytes with PET, for example.

Dr Carolyn Lam:                And I just want to end up with one little point. Ricardo, how about the fact that part of your results don't corroborate the ESC guideline recommendations that they say you have to avoid FDG-PET in the recently implanted prosthetic valve. How do you feel it's going to play out for clinicians?

Dr Ricardo Budde:           Well, I think the 2015 ESC guidelines on endocarditis are a very important document. One must take into account that the inclusion of PET CT in the ESC guidelines was a major step, and some might say that it was a little premature to include the use of PET CT because the number of data that was out there were still relatively limited. I think it's something that we are learning along the way. Now that we are using PET CT more often we are more aware of what we do to findings that we get and also the findings that we have within specific timeframes after the implantation of a prosthetic heart valve. One of the things that I think is desperately needed also at the moment is to have a prospective study where we would do PET CT in patients after implantation of a prosthetic heart valve that do not show any signs of endocarditis where we do PET CT just to determine these normal uptake values. I think that would be a major contribution to the whole learning experience that we're currently having with implementing PET CT within prosthetic heart valve endocarditis.

Dr Carolyn Lam:                Indeed, and Ricardo your paper has added significantly to our understanding. Readers, remember, it's Figure 6 of our feature paper this week. It is a beautiful figure. Pick it up, take a look. In the meantime just thank you so much Ricardo and Victoria for joining me today.

                                                Listeners, don't forget to tune in again next week.