Preview Mode Links will not work in preview mode

Circulation on the Run

Aug 7, 2018

Dr Carolyn Lam:                Welcome to Circulation on the Run, your weekly podcast summary and backstage pass to the journal and its editors. I'm Dr Carolyn Lam, associate editor from the National Heart Center and Duke National University of Singapore.

                                                Can proteomic biomarkers distinguish between subtypes of aortic stenosis even years before surgery? Well, to find out more, stay tuned. That's coming right up after these summaries.

                                                The first original paper this week adds to the evidence that smoke-free policies are associated with a lower risk of cardiovascular disease. First and corresponding author, Dr Mayne from Northwestern University Feinberg School of Medicine, and her colleagues linked smoke-free policies to participants of the Coronary Artery Risk Development in Young Adults, or CARDIA study, which has a follow-up of up to 20 years. They found that smoke-free policies in workplaces were associated with significantly lower risk of incident cardiovascular disease after controlling for a wide range of covariants. Results were weaker for bar and restaurant bans, but in the same direction.

                                                Preventive fractions range from an impressive 24 to 46%. Thus, smoke-free policies may improve cardiovascular health through reducing population exposure to tobacco smoke. However, we should remember that much of the US population remains unprotected by smoke-free policies. Thus, taken together with prior ecological work, these results support the continued expansion of smoke-free policies in indoor public places.

                                                Most phase-3 randomized control trials feature time-to-first event end points for their primary analysis. In chronic diseases, however, a clinical event can occur more than once and recurrent event methods have been proposed to more fully capture the disease burden, as well as to improve statistical precision and power.

                                                However, is this really the case? This question was examined by first author, Dr Brian Claggett, corresponding author, Dr Scott Solomon, from Brigham Women's Hospital in Boston, Massachusetts, and their colleagues, who sought to better characterize factors that influence the statistical properties of recurrent events and time-to-first event methods in the evaluation of randomized therapy.

                                                They performed repeated simulated trials with 1:1 randomization of 4000 patients to active versus control therapy. Through simulation, they varied the degree of between-patient heterogeneity of risk as well as the extent of treatment discontinuation. They then compared their findings with those from the actual randomized control trials.

                                                The authors found that the statistical power of both recurrent events and time-t- first event methods were reduced by increasing heterogeneity of patient risk, a parameter that's not usually included in conventional power and sample size formulae. Furthermore, data from real clinical trials were consistent with the simulation studies, confirming that the greatest statistical gains from the use of recurrent events methods occurred in the presence of high patient heterogeneity and low rates of study drug discontinuation.

                                                The next paper uncovers a novel biomarker and therapeutic target of pulmonary arterial hypertension, and that is selenoprotein P. First author Dr Kikuchi, corresponding author, Dr Shimokawa, from Takaoka University Graduate School of Medicine in Japan and their colleagues performed micro-array analyses using pulmonary arterial hypertension, pulmonary artery smooth muscle cells, and found a 32-fold up regulation of selenoprotein P compared with controls.

                                                Selenoprotein P promotes cell proliferation and apoptosis through increased oxidative stress and mitochondrial dysfunction. Using five strains of genetically modified mice, the authors demonstrated a pathogenic role of selenoprotein P in the development of hypoxia-induced pulmonary hypertension.

                                                Furthermore, sanguinarine, which is an orally active small molecule identified by throughput screening reduced selenoprotein P expression and pulmonary arterial smooth muscle cell proliferation and ameliorated pulmonary hypertension.

                                                In summary, this study shows that selenoprotein P plays a crucial role in the pathogenesis of pulmonary arterial hypertension and may be a useful and novel biomarker and therapeutic target in this disorder.

                                                Familial hypercholesterolemia is known to be associated with a high risk of ischemic heart disease, including myocardial infraction, but what about the risk of ischemic stroke? Well, first author, Dr Beheshti, corresponding author, Dr Nordestgaard, from Copenhagen University Hospital and their colleagues examined the associations of familial hypercholesterolemia and high LDL cholesterol with ischemic stroke in both causal, genetic, and observational analyses using more than 106000 individuals from the Copenhagen General Population Study, and more than 10000 individuals from the Copenhagen City Heart Study.

                                                They used a Mendelian randomization design to test whether high LDL per se had a causal effect on ischemic stroke risk using a combination of the familial hypercholesterolemia causative mutations and common genetic variants associated with high LDL.

                                                The authors found that there was no association between familial hypercholesterolemia mutations and ischemic stroke risk. In the Mendelian randomization analysis, also including common genetic variants, there was also no causal effect of high LDL on the risk of ischemic stroke.

                                                These findings imply that the predominant goal of targeting LDL lowering in those with and without familiar hypercholesterolemia is likely to reduce myocardial infractions, rather than ischemic stroke. Well, that wraps it up for our summaries. Now for our feature discussion.

                                                Circulation publishes numerous papers regarding circulating biomarkers. We talk about biomarkers in the diagnostic, prognostic sense, but what about in a pathophysiologic sense, and especially in a disease as important as aortic stenosis? Well, that's what our featured paper this week is all about and I'm so excited to have with us corresponding author, Dr Stefan Söderberg, from Umeå University in Sweden, as well as our associate editor, Dr Peipei Ping from UCLA. We will be discussing the paper entitled “Proteomic Biomarkers for Incident Aortic Stenosis Requiring Valvular Replacement.” Stefan, could you tell us a bit about what made you look at this very interesting question, and perhaps the unique resources you had in Sweden to look at this?

Dr Stefan Söderberg:      I'm a practicing cardiologist, and I have been working a lot with aortic stenosis over the years. It's frustrating that we can't do anything to stop the process. In many cases, the patients are old and frail, and if you could find the means to stop the process long before they need surgery, it will be of great benefit for the human and for the society.

                                                Also, knowing that the interventions on the statins, for example, have been unsuccessful, we thought that there must be better ways or other biomarkers. Furthermore, that many of these studies, the phenotype of aortic stenosis has been very poorly described and there is probably much more behind just aortic stenosis than just, for example, calcium deposits in an X-ray, et cetera, et cetera.

Dr Carolyn Lam:                You used some very unique resources in Sweden to therefore look at the proteomic signatures of aortic stenosis. Could you describe that and simplify perhaps the results so we can understand it?

Dr Stefan Söderberg:      First of all, I got this idea from other studies done up in northern Sweden. If you have an absolutely unique setting, the combination of huge population-based studies in 30 years back, we have a huge biobank with examples of extraordinary good quality from each of these participants. For example, for each participant, the blood has been spun and put into freezer, deep freezer, within one hour for 30 years, and they are now, as I said, about 100000.

                                                Furthermore, I'm working as a cardiologist at a university, and up here, you do all of the aortic surgery for the whole northern Sweden. That is, we can combine the names of the person undergoing surgery together with these population-based surveys and we can get details from all those who have participated in the surveys long before they did the surgery, and they can go and retrieve samples from cases and match controls from the freezers. It's a unique setup. Then, when we were designing the study, we got the chance to get these analyses done by our friends at the university to get the proteomic analysis via a unique data technique.

Dr Carolyn Lam:                Wow. Could you describe your results?

Dr Stefan Söderberg:      The results that we found in the first set of 334 patients who underwent surgery is 10 years after their first sampling, we found six proteins. Then, we got the question back from Circulation to establish a validation cohort, and we were able to do so to include all those new cases in the last 2 years, and there we could replicate five of these proteins.

                                                The interesting thing that the pattern is completely different between those having coronary artery disease from those without. That kind of phenotyping has not been done throughout other aortic stenosis studies. Therefore, this study is unique. We have had two papers in the last year in the Journal of American Heart Association from the cohort, as well, showing the thing that happened.

                                                For example, lipoprotein little A is only associated with future aortic stenosis valve replacement only in those with concomitant coronary artery disease. There are many unique things, the prospective design, and the phenotype differentiating those with and without coronary artery disease.

Dr Carolyn Lam:                Yeah, and if I may just reiterate that the population base that you work with is just enviable and just so that the audience realizes, these are biomarkers that were collected 11 years before the aortic stenosis surgery, isn't it? You really had a long follow-up.

                                                Also, just to let everyone know, it was a proximity extension assay that you used for the discovery, and the six proteins were growth differentiating factor 15, or GDF15, galectin-4, von Willebrand factor, interleukin 17 receptor A, transferrin receptor protein 1, and PCSK9, so very interesting. Peipei, you have a way of putting things into context so beautifully. Could you tell us your thoughts when you saw this paper?

Dr Peipei Ping:                   I thought this is a very high-quality study that actually benefited from the long-term established, well-controlled cohort in northern Sweden, as Dr Söderberg just shared with us. On the other end, it married a technology platform that's very well-established and -validated, and this situation targeted proteomics platforms using multi-proximity extension assays with carefully controlled markers and screened 92 cardiovascular candidate markers.

                                                This is the kind of approach that provides semi-quantitative as well as quantitative outputs and is capable to offer validated screens on large population clinical subsets. A study of such with a high value cohort combined with a validated and well-controlled technology platform offered results that clearly have clinical significance, as well as setting up examples for other studies to follow. The enthusiasm from the editorial boards, as well as the reviewers, have been substantially high and supportive.

Dr Stefan Söderberg:      Fantastic. I'm very glad to hear this.

Dr Carolyn Lam:                Stefan, you also mentioned that a very unique element was the separation of aortic stenosis with and within coronary artery disease, or at least established or visible coronary artery disease. Could you explain how that provided pathophysiologic insights?

Dr Stefan Söderberg:      First, I should say we were very, very strict. Our routine is that everyone was 100% undergoing, aortic valve replacement, they undergo a coronary angiogram before. If we saw any sign of atheromatosis, it was not enough that they had the significant stenosis, but any signs, they were put into the group of coronary artery disease. Those without, we couldn't see anything there. Radiograph here reported absolutely clean coronary arteries. Of course, we cannot exclude if there were aortic changes within them all, of course.

                                                We believe that this is a very important message that in order to further study aortic stenosis, we should be very careful in phenotyping the disease. We hope the growing cohort will be able to do this further. For example, cuspid versus tricuspid valves, women versus men, et cetera.

                                                My answer in short is phenotype. Let me take one example which I found very, very exciting. That is the finding of PCSK9, which is closely related not only to cholesterol symptoms, but also to lipoprotein little A emphasis. As you know, the first strong finding in aortic stenosis was the LP little A. This is related to that genetic finding, and that was in the huge study from Canada. They did not have the same phenotyping, so we had information to his important findings. That's one example.

                                                Another example is the transferring receptor, where data has shown that bleeding acutely in the valvular tissue causes damage, and this relates iron metabolism to the formation of the aortic valve. Obviously, it seems that the process in the aortic valve is very much similar to the vessel arteriosclerosis. It seems to be different. This is the indication that when we formulate new studies or new drugs on aortic stenosis, we must be very careful to use the right drug for the right type of valvular disease.

Dr Carolyn Lam:                Those are great points. Peipei, do you think that's the main clinical take-home message, beyond that great comment you made earlier that this paper's just a great example of the use of tools, modern tools, that we have in proteomic characterization like the proximity extension assay to provide pathophysiologic insights when you have a really well-phenotyped cohort? What's the critical take-home message, though? Is there one now?

Dr Peipei Ping:                   The take-home message is marriage of amazing high value cohort's data sets with that of the well-controlled clinical study using target proteomics approaches. In this particular study, one main critical innovation is the study is capable of providing insights regarding molecular signatures that have predicted values. As stated in the manuscript, the circulating proteins that found critically important, their alterations took place years before the surgery were associated with aortic stenosis. That is of value, clinical value, to many other clinical studies to follow.

Dr Carolyn Lam:                Wow. That's wonderful. Thank you so much for putting these findings in context for us. Thank you, listeners, for joining us today. Don't forget to tune in again next week.